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SUMMARY

A higher order compact (HOC) �nite di�erence solution procedure has been proposed for the steady two-
dimensional (2D) convection–di�usion equation on non-uniform orthogonal Cartesian grids involving
no transformation from the physical space to the computational space. E�ectiveness of the method is
seen from the fact that for the �rst time, an HOC algorithm on non-uniform grid has been extended to
the Navier–Stokes (N–S) equations. Apart from avoiding usual computational complexities associated
with conventional transformation techniques, the method produces very accurate solutions for di�cult
test cases. Besides including the good features of ordinary HOC schemes, the method has the advantage
of better scale resolution with smaller number of grid points, with resultant saving of memory and CPU
time. Gain in time however may not be proportional to the decrease in the number of grid points as
grid non-uniformity imparts asymmetry to some of the associated matrices which otherwise would have
been symmetric. The solution procedure is also highly robust as it computes complex �ows such as
that in the lid-driven square cavity at high Reynolds numbers (Re), for which no HOC results have so
far been seen. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Finite di�erence method is frequently used in computational �uid dynamics. The method
essentially consists in setting up a grid in the problem domain, discretizing the governing
equations with respect to the grid and solving them numerically. The common practice is to
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use a uniform grid, though it may not be the most appropriate one for e�cient computation.
Accurate resolution of the solution requires that grid points are clustered in the regions of
large gradients while economy demands that they are spread out in the regions of small
gradients [1–3]. Hence a non-uniform grid is indicated for many �ow con�gurations. The
popular approach is to map the physical space with a non-uniform grid onto a computational
space with uniform grid where a transformed set of equations is �rst solved before mapping
this solution back onto the physical space. Disadvantages of such an approach are many.
There is a substantial increase in the number of terms to be discretized in the transformed
governing equation giving rise to added computation. Many a time the transformation of the
equations results in the appearance of cross-derivative terms which increases the computational
complexity in many solution algorithms [3]. Moreover if the transformation is not explicitly
known, it may have to be generated by numerical solution of some di�erential equation and
this results in additional error. Overall, the solution procedure becomes complicated, expensive
and sometimes error-prone.
The HOC �nite di�erence schemes for the computation of incompressible viscous �ows

[4–13] are gradually gaining popularity because of their high accuracy and advantages associ-
ated with compact di�erence stencils. However such computations have so far been carried out
only on uniform grids [4–9, 11–13]. In a departure from this practice, Spotz and Carey [14],
and Zhang et al. [15] recently applied a fourth-order accurate HOC scheme on a non-uniform
grid to linear convection–di�usion equations without source term. They use the conventional
transformation technique which inevitably brings in the complications of having to deal with
some new cross-derivative terms in the transformed partial di�erential equations (PDE) in
addition to the increase in terms of arithmetic operations. Also, the advantage of setting the
di�usive coe�cients appearing in the PDEs in the physical space to unity is lost because
they no longer remain the same in the transformed space. An additional constraint is that the
transformation has to be carried out in such a way as to keep the grid aspect ratio unity in
the computational space. In the present work, we propose an HOC scheme on rectangular
non-uniform grids for the steady 2D convection–di�usion equation with variable coe�cients
without any transformation. It is based on the Taylor series expansion of a continuous func-
tion at a particular point for two di�erent step lengths and approximation of the derivatives
appearing in the 2D convection–di�usion equation on a non-uniform stencil. The original PDE
is then used again to replace the derivative terms appearing in the �nite di�erence approxima-
tions, resulting in a higher order scheme on a compact stencil of nine points. We have seen
that the grid aspect ratio in the earlier HOC schemes has to be necessarily unity. Even in the
case where non-uniform grid has been used with transformation [14, 15], this constraint re-
main in the computational space. The present scheme not only frees HOC schemes from such
a constraint, but also makes it possible to use whatever non-uniform pattern of spacing one
chooses in either direction. The order of accuracy of the scheme is four or three based on the
pattern of grid spacing. Apart from avoiding the complexities associated with transformation
techniques, this method a�ords a solution procedure that marries the virtues of a clustered
grid to the e�ciency of an HOC scheme. To validate the algorithm, the method has �rst
been tested on two problems governed by linear PDEs for which analytical solutions exist.
The power of the algorithm is better realized when applied to �uid �ow problems governed
by the 2D incompressible N–S equations at high Re’s in that it captures the physics of the
�ow accurately with relatively smaller number of grid points—a result of grid clustering—
with complexities not higher than that associated with an HOC scheme on a uniform grid.
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The scheme handles both Dirichlet and Neumann boundary conditions with ease and has the
potential for extension to transient �ow problems and curvilinear co-ordinates as well.
The paper is organized in four sections. Section 2 describes the basic formulations and

numerical procedures, Section 3 the numerical results for three linear and non-linear test
cases and Section 4 the conclusions.

2. BASIC FORMULATIONS AND NUMERICAL PROCEDURE

Consider a rectangular domain a16x6a2, b16y6b2. We divide the interval [a1; a2] into
sub-intervals, not necessarily of equal length, by the points a1 = x0; x1; x2; : : : ; xm−1; xm= a2
and similarly [b1; b2] by the points b1 =y0; y1; y2; : : : ; yn−1; yn= b2. In the x-direction, the
forward and backward step lengths are given by xf = xi+1− xi and xb = xi − xi−1, respectively,
and similarly, in the y-direction, we have yf =yj+1 − yj and yb =yj − yj−1, 16i6m− 1,
16j6n− 1. For a function �(x; y) assumed smooth in the given domain, a Taylor series
expansion at point (i + 1; j) (Figure 1)
gives
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Figure 1. Non-uniform HOC stencil.
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From Equations (1) and (2), we have
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In the x-direction, the �rst- and second-order central di�erence operators are de�ned by
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With these notations, (4) becomes
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From Equations (3) and (5), the �rst derivative may be approximated as
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Similar expressions can be derived for the y-derivatives.
Now, we proceed to derive the HOC scheme for the 2D convection–di�usion equation on

non-uniform grids. The steady-state 2D convection–di�usion equation in a transport variable
� can be written as

−∇2�+ c
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@y
=f(x; y) (7)
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where ∇2≡ @2=@x2 + @2=@y2, c and d are variable or constant convective coe�cients in the
x- and y-directions respectively and f is a forcing function. In view of Equations (5) and
(6), the last equation may be approximated at the point (i; j) as

[−�2x − �2y + c{�x − 0:5(xf − xb)�2x}+ d{�y − 0:5(yf − yb)�2y}]�ij + �ij=fij (8)

where �ij is the truncation error given by
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with �1, �2 being the leading truncation error terms and
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2.1. Constant convective coe�cients

If the convective coe�cients c and d are constants, using the original Equation (7) to substitute
for the third- and fourth-order derivatives, (9) can be written as

�ij = (H1 +H2c)c
@2�
@x2

+ (K1 + K2d)d
@2�
@y2

+ {(H1 +H2c)d+ (K1 + K2d)c} @2�
@x@y

− (H1 +H2c − K2c)
@3�
@x@y2

− (K1 + K2d−H2d)
@3�

@x2@y
− (H2 + K2)

@4�
@x2@y2

−
{
(H1 +H2c)

@
@x
+ (K1 + K2d)

@
@y
+H2

@2

@x2
+ K2

@2

@y2

}
f

+(xf − xb)(x2f + x2b)�1 + (yf − yb)(y2f + y2b)�2 +O
(
x5f + x5b
xf + xb

)
(10)

From Equations (8) and (10), the HOC scheme on non-uniform grids for Equation (7) can
now be written as

[−Aij�2x − Bij�2y + c�x + d�y +Gij�x�y −Hij�x�2y − Kij�2x �y − Lij�2x �
2
y]�ij=Fij (11)

where the coe�cients Aij; Bij; Gij; Hij; Kij and Lij are as follows:

Aij =1+ 0:5(xf − xb)c − (H1 +H2c)c (12)

Bij =1+ 0:5(yf − yb)d− (K1 + K2d)d (13)
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Gij = (H1 +H2c)d+ (K1 + K2d)c (14)

Hij =H1 +H2c − K2c (15)

Kij =K1 + K2d−H2d (16)

Lij =H2 + K2 (17)

and

Fij = [1 + (H1 +H2c)�x + (K1 + K2d)�y + {H2 − 0:5(xf − xb)(H1 +H2c)}�2x
+{K2 − 0:5(yf − yb)(K1 + K2d)}�2y]fij (18)

2.2. Variable convective coe�cients

For variable convective coe�cients the formulations are more complicated with the derivatives
of c and d also coming into the picture. Using (7), as before, to substitute for the derivatives,
(9) can be written as
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From Equations (8) and (19), we have the following HOC scheme on non-uniform grids for
Equation (7):

[−Aij�2x − Bij�2y + Cij�x +Dij�y +Gij�x�y −Hij�x�2y − Kij�2x �y − Lij�2x �
2
y]�ij=Fij (20)

where the coe�cients Cij; Dij; Aij; Bij and Gij are given by

Cij = [1 + (H1 +H2c)�x + (K1 + K2d)�y + {H2 − 0:5(xf − xb)(H1 +H2c)}�2x
+{K2 − 0:5(yf − yb)(K1 + K2d)}�2y]c (21)
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Dij = [1 + (H1 +H2c)�x + (K1 + K2d)�y + {H2 − 0:5(xf − xb)(H1 +H2c)}�2x
+{K2 − 0:5(yf − yb)(K1 + K2d)}�2y]d (22)

Aij =1− [(H1 +H2c)c+ 2H2{�xc − 0:5(xf − xb)�2x c}] + 0:5(xf − xb)Cij (23)

Bij =1− [(K1 + K2d)d+ 2K2{�yd− 0:5(yf − yb)�2yd}] + 0:5(yf − yb)Dij (24)

and
Gij = (H1 +H2c)d+ (K1 + K2d)c+ 2H2�xd+ 2K2�yc

−{H2(xf − xb)�2x d+ K2(yf − yb)�2yc} (25)

The expressions for �ij in Equations (10) and (19) clearly indicate that the local order of
accuracy of the scheme is four or three depending upon the grid spacing. The order of the
truncation error is four on uniform grids (when xf = xb and yf =yb) and at least three when
the grid spacing is non-uniform (when xf �= xb or yf �=yb).
The details of the �nite di�erence operators appearing in Equations (11) and (20) are given

in the Appendix. The discretized form of Equations (11) and (20) can now be written as

1∑
k1=−1

1∑
k2=−1

�i+k1 ; j+k2�i+k1 ; j+k2 =
1∑

k1=−1

1∑
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�i+k1 ; j+k2fi+k1 ; j+k2 (26)

where �, �’s are functions of the convective coe�cients c and d, their derivatives and the
step lengths xf , xb, yf and yb. In matrix form, the system of algebraic equations given by
(26) can now be written as

A�=F (27)

where the coe�cient matrix A is an asymmetric sparse matrix with each row containing at
most nine non-zero entries. For a grid of size m× n, A is of size mn×mn, and � and F
are mn-component vectors. Partitioning A, � and F into sub-matrices corresponding to the
interior and the boundaries, Equation (27) can be written as



AL O O O O
O AB O O O
O O AD O O
O O O AT O
O O O O AR
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�T

�R



=




FL
FB
FD
FT
FR




where su�xes L, R, B and T stand, respectively, for the left, right, bottom and top boundaries
of the domain and D represents the interior. Here, O’s are rectangular null matrices of orders
ranging from m× (n − 2) to m× (m − 2)(n − 2). The block square matrices AB and AT are
of order m, AL and AR are of order (n − 2), and AD is of order (m − 2)(n − 2). If Dirichlet
boundary conditions are prescribed, the sub-matrices representing the boundary conditions are
identity matrices. For Neumann boundary conditions, they will be sparse matrices with the
number of non-zero entries in a particular row depending upon the order of the boundary
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di�erence scheme. The details of the elements of the column vectors on the left-hand side
are as follows:

[�L]=[�1;2; : : : ; �1;n−1]�; [�B]=[�1;1; : : : ; �m;1]�

[�T]=[�1;n; : : : ; �m;n]�; [�R]=[�m;2; : : : ; �m;n−1]�

and
[�D]= [�2;2; : : : ; �m−1;2; �2;3; : : : ; �m−1;3; : : : ; �2;n−1; : : : ; �m−1;n−1]�

Similarly, the vectors [FL](n−2)×1; [FR](n−2)×1; [FB]m×1 and [FT]m×1 correspond respectively
to the left, right, bottom and top boundary conditions, and the entries of [FD](m−2)(n−2)×1 are
given by the right-hand side of Equation (26).
The next step is to solve Equation (27) with iterative methods. As the coe�cient matrix

A is generally not diagonally dominant, conventional iterative methods such as Gauss–Seidel
cannot be used. On uniform grids, some of the associated matrices are symmetric and positive
de�nite, which allows algorithms like conjugate gradient (CG) [16] to be used. As non-uniform
grid invariably leads to unsymmetric matrices, in order to solve these systems, the hybrid
biconjugate gradient stabilized method (BiCGStab(2)) [16] is used without preconditioning.
For a problem having Dirichlet boundary conditions, A will have at most 2[m + n − 2] +
9× (m− 2)(n− 2) non-zero entries. Therefore, for such iterative methods, the computation of
the matrix-vector product A� involves 2[m+n−2]+81× (m−2)(n−2) arithmetic operations
only.
It may be noted that for the coupled non-linear PDEs (such as the  -! form of the N–S

equations), an iterative solution procedure must be adopted. These iterations may be termed
as outer iterations. We use a decoupled algorithm where vorticity and stream functions are
solved iteratively and sequentially through hybrid BiCGStab(2) and lagging the appropriate
terms. The latter iterations may be termed inner iterations which must be carried out at every
outer iteration with updated data.

3. NUMERICAL TEST CASES

The proposed scheme has been applied to two linear and one non-linear test cases. The
non-linear case deals with �uid �ows governed by the 2D steady-state incompressible N–S
equations. Care has been taken to choose such problems as will permit the use of non-uniform
grids at certain portions of the solution domain for better scale resolution and grid economy.
Both Dirichlet and Neumann boundary conditions have been used wherever necessary.

3.1. Problem 1: Gartland model problem

We take the problem proposed by Gartland [17], where in Equation (7),

c=Re; d=0; f=0 ∀ 06x; y61

with boundary conditions

�(x; 0) =�(x; 1)=0 06y61

�(0; y) = sin �y; �(1; y)=2 sin �y 06x61
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Figure 2. For problem 1, at Re=100: (a) the grid used (21× 21), the surface and contour plots of
(b) the exact and numerical solutions with (c) the present (�=0:5) and (d) the CD scheme.

The exact solution is given by

�(x; y)= eRex=2 sin �y
2e−Re=2 sinh �x + sinh �(1− x)

sinh �
; �2 =�2 +

Re2

4
(28)

The solution has a boundary layer attached to the line x=1 and therefore, a uniform grid
along the y-direction, and a non-uniform grid along the x-direction with clustering near x=1
has been used with the following stretching function [8]

xi=
i

imax
+

�
�
sin

(
�i
imax

)

where � is a stretching parameter controlling the density of grid points in the x-direction. It
may be noted that higher the value of �, greater the clustering near the boundary. The grid is
shown in Figure 2(a). Figures 2(b), (c) and (d), respectively, show the surface and contour
plots of the exact, the numerical solution with the present scheme (�=0:5) and the numerical
solution with the central di�erence (CD) scheme on a 21× 21 grid for Re=100. While the
numerical solution with the present scheme shows no discernable di�erences with the exact
solution, the CD solution shows a clear oscillation in the region of the boundary layer. This
is attributed to the violation of the so-called cell-P�eclect condition

Re�x=Re�x¡2 or �x¡
2
Re

On the other hand the maximum and the minimum values of �x with our scheme are 0.064
and 0.045, which being greater than the limit 0.02, clearly violates the above condition. In spite
of this violation, no oscillation is seen in the results indicating that the present scheme has the
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Figure 3. Surface plots of the absolute errors for problem 1 (Re=100; 21× 21 grid): (a) upwind;
(b) central di�erence; (c) uniform HOC; and (d) present (�=0:5) scheme.

oscillation suppressing property.†† Also the surface plots of the absolute errors (Figure 3) for
the upwind, CD, HOC uniform and the present scheme for the same con�guration con�rms
that, amongst them, the present scheme yields the best result. Table I compares the absolute
errors (abs(er)) at speci�c points and the maximum errors (max(er)) on di�erent grid sizes
for di�erent stretching parameters. Because of the clustering in the boundary layer region,
the maximum errors for the present scheme for all �’s are lower than the maximum error on
uniform grids and it decreases with increasing � values. It is seen from Table I that with grid
re�nement, the point-wise error decays with O(hM ), where 36M64 as expected. Here M is
calculated as

M =
log(e1=e2)
log(N2=N1)

where e1, e2 are the absolute errors estimated at a particular point for two di�erent grids with
N1 + 1 and N2 + 1 points in the x-direction. The maximum errors for di�erent grids occur
at di�erent points for the same range of parameters and are not directly comparable. In any
case the maximum error from the data exhibits a better than O(h2) rate of convergence.

††A rigorous adjacent slope ratio analysis reveals that the scheme for the one-dimensional case (to be discussed in
a separate paper) is non-oscillatory if the ratio of the forward and backward step lengths

xf : xb ∈
(
2− 2√

3
;
5−√

3
2

)
∪
(
1
2
− 1
2
√
3
;
3−√

5
2

)
∪
(
3 +

√
5

2
;
5 +

√
3

2

)
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Table I. Comparison of errors on uniform and non-uniform grids for Problem 1 for Re=100.

Uniform (�=0:0)

Grid abs(er) at (0:5; 0:5) abs(er) at (0:75; 0:5) abs(er) at (0:96875; 0:5) max(er)

33× 33 1:18× 10−4 1:70× 10−4 3:30× 10−2 4:06× 10−2
65× 65 7:44× 10−6 1:07× 10−5 1:41× 10−3 6:81× 10−3
129× 129 4:65× 10−7 6:71× 10−7 7:94× 10−5 1:30× 10−3

Grid Non-uniform (�=0:5)
abs(er) at (0:5002; 0:5) abs(er) at (0:7428; 0:5) abs(er) at (0:9783; 0:5) max(er)

33× 33 2:69× 10−4 3:06× 10−4 1:03× 10−2 1:37× 10−2
65× 65 1:73× 10−5 1:98× 10−5 5:41× 10−4 2:69× 10−3
129× 129 1:09× 10−6 1:26× 10−6 3:24× 10−5 5:54× 10−4

Grid Non-uniform (�=0:7)
abs(er) at (0:5019; 0:5) abs(er) at (0:7519; 0:5) abs(er) at (0:9822; 0:5) max(er)

33× 33 3:75× 10−4 4:16× 10−4 5:18× 10−3 7:71× 10−3
65× 65 2:44× 10−5 2:72× 10−5 2:91× 10−4 1:60× 10−3
129× 129 1:54× 10−6 1:73× 10−6 1:76× 10−5 3:51× 10−4

Grid Non-uniform (�=0:9)
abs(er) at (0:4995; 0:5) abs(er) at (0:7628; 0:5) abs(er) at (0:9861; 0:5) max(er)

33× 33 5:12× 10−4 5:65× 10−4 2:05× 10−3 4:95× 10−3
65× 65 3:37× 10−5 3:74× 10−5 1:24× 10−4 1:24× 10−3
129× 129 2:13× 10−6 2:38× 10−6 7:81× 10−6 3:12× 10−4

3.2. Problem 2: 2D linear convection–di�usion

We take the problem where in Equation (7),

c=Re cos 	; d=Re sin 	 and f=0 06x61; 06y61

with boundary conditions

�(x; 0) =�(x; 1)=0 06x61

�(0; y) = 4y(1− y) �(1; y)=0; 06y61

This problem has the exact solution

�(x; y)= exp
(
−Re
2
(x cos 	+ y sin 	)

) ∞∑
n=1

{Bn sinh[�n(1− x)] sin(n�y)} (29)

where

�2n= n2�2 +
Re2

4
and

Bn=
8

sinh �n

∫ 1

0
y(1− y) exp

(−Re
2

y sin 	
)
sin(n�y) dy
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Figure 4. Grid used (32× 32) for Problem 2.

It deals with the convection of � (temperature or concentration) in a �uid moving with
a uniform velocity at an angle 	 to the x-axis. It has earlier been solved numerically by
Gupta et al. [18] and Mackinnon and Johnson [6]. For non-zero values of 	, the solution has
boundary layers near x=1 and y=1. For 	=0, convection is along x-axis only resulting in
the development of boundary layers near x=1. The present computation uses the following
stretching function (see Reference [14]) in both x- and y-directions to generate clustered grids
with re�nement near x=1 and y=1 (Figure 4)

xi=
i

imax
+

�
�
sin

(
�i
imax

)
; 0¡�61

where � is a stretching parameter controlling the density of grid points in the x-direction. It
may be noted that higher the value of �, greater the clustering near the boundary. The method
captures the boundary layers very well as can be seen from Figure 5 where the computed
contours of � has been plotted for two convection angles �=4 and �=8. Table II compares
the maximum error (max(er)) for Re=40 for three convection angles, viz. �=4, �=8 and
0 with those obtained from the Upwind Di�erence Scheme (UDS), the Central Di�erence
Scheme (CDS), and the higher order schemes of Spotz and Carey [5] and Gupta et al. [18]
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(a) (b)

Figure 5. Contour plots of � in Problem 2 for Re=80: (a) 	=�=4; and (b) 	=�=8.

Table II. Comparison of the maximum errors of di�erent schemes for 2D linear convection–di�usion.

UDS CDS Gupta et al. Spotz and Carey Present (�=0:8)
	 Grid size O(h) O(h2) O(h4) O(h4) O(h
) (
=3 or 4)

0 16× 16 0.1604 0.1532 0.01323 0.04050 0.01314
32× 32 0.1256 0.0445 0.00112 0.00856 0.00302

�
8 16× 16 0.2268 0.1286 0.01019 0.01769 0.03002

32× 32 0.1394 0.0348 0.00081 0.00492 0.00759

�
4 16× 16 0.2035 0.0803 0.00598 0.00598 0.00487

32× 32 0.1218 0.0195 0.00041 0.00041 0.00045

for di�erent grid sizes. When judged against the orders of accuracy of the other schemes, the
errors of the present computations are within the expected limits.

3.3. Problem 3: Lid-driven cavity �ow

The solution procedure is now extended to the 2D laminar lid-driven square cavity problem
which has been used extensively to study the strength and accuracy of numerical methods
for incompressible �ow problems. This �ow is governed by the 2D incompressible N–S
equations. The stream function-vorticity ( –!) form of these equations has been used in the
present computations. The geometry and the boundary conditions have been shown in Figure 6
where the top wall is moving from left to right and the remaining three walls are stationary.
The �ow is driven by the moving wall and the resultant �ow patterns depend on Re. Because
of the presence of large gradients near the walls, grid has been clustered there using the
stretching function

xi=
i

imax
− �
2�
sin

(
2�i
imax

)
; 0¡�61
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u=1, v=0

u=0, v=0

u=0
v=0

Primary vortex u=0
v=0

u=0
v=0

Upstream
secondary
top vortex

Upstream
secondary
bottom
vortex

Downstream
secondary
bottom
vortex

Figure 6. The lid-driven cavity �ow con�guration with boundary conditions.

(a) (b)

Figure 7. 81× 81 grids for square cavity: (a) uniform; and (b) clustered with �=0:6.

which we obtain by combining the functions used by Spotz and Carey [14] and Janssen and
Henkes [19]. Here, the parameter � determines the degree of clustering near the boundaries
with centrosymmetric stretching. The e�ect of � on grids can be seen from Figures 7(a) and
(b) where a uniform and a clustered 81× 81 grid have been shown. Numerical results are pre-
sented for Re’s ranging from 100 to 7500 with grid sizes varying from 11× 11 to 121× 121.
As the boundary layer thickness is of the order of Re−0:5, grid size and � have been chosen in
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(a) (b)

Figure 8. Streamlines for the lid-driven cavity �ow on 11× 11 grid for Re=100:
(a) uniform HOC; and (b) present scheme (�=0:7).

such a way that there are several points within the boundary layer. For example, the minimum
internodal distance near the wall is 0.0345 for Re=100 (11× 11; �=0:7) and 1:37× 10−4 for
Re=3200 (81× 81; �=0:99). The Neumann boundary conditions for vorticity are obtained
through a third-order compact formula [5] as a fourth-order compact boundary scheme is
found to be oscillatory at the moving wall. For Re=100 the streamline contours obtained
by HOC schemes on 11× 11 uniform and non-uniform grids are shown in Figures 8(a) and
(b). It is clear from the �gures that the fourth-order accurate scheme on uniform grids cap-
tures none of the corner vortices whereas the present scheme with accuracy lower than fourth
does. Interestingly the present scheme with a grid as coarse as 21× 21 (�=0:6) captures the
�ow details quite accurately as can be seen from the comparison with the results of Ghia
et al. [20] produced with a 129× 129 grid (Figure 9). The centerline velocity pro�les ob-
tained through the present scheme with those of Ghia et al. [20] are presented side by side
in Figure 10 for di�erent Re’s. Again it is seen that the present scheme computes the �ow
with a much coarser grid. The signi�cance of grid clustering at high Re’s involving multi-
ple scales can be seen from Figure 11 where for Re=3200, the corner vortex features on
81× 81 grids are shown for �=0:6 and 0:99. With �=0:6 (Figure 11(a)), corner vortices
only up to the tertiary level have been resolved whereas with �=0:99 two hitherto unreported
vortices—the quaternary and post-quaternary-have been captured (Figure 11(b)—walls re-
moved for clarity). Figure 12 shows the streamline contours for Re=1000 and 7500. It is seen
that for Re=1000, the present scheme on a 31× 31 grid captures even the tertiary vortices
(Figure 12(a)—walls removed for clarity) whereas on uniform grid of the same size, iteration
stagnates, [5]. Figure 12(b) shows for Re=7500 the general �ow features including the top
left corner vortex. The following two observations (as also can be seen from Figures 8 and
12), which are in agreement with the earlier investigations [20–23], can be made with increase
in Re: (i) the primary vortex center shifts from the top right corner towards the geometric
center of the cavity and virtually becomes invariant for Re¿5000 (ii) there is an expansion
of the recirculation zone for the secondary vortices with a tendency of their centers to shift
towards the geometric center. In Table III, the stream function and the vorticity values at the
primary vortex centers of the present study have been compared with the calculations of Kim
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Figure 9. Comparisons of (a) vorticity along the moving wall; (b) horizontal velocity
along the vertical centerline; and (c) vertical velocity along the horizontal centerline

for Re=100 in the lid-driven cavity �ow.

and Moin [21], Ghia et al. [20] and Bruneau and Jouron [23] and, agreement has been very
close. In Figure 13 the convergence history based on the root mean square error [rms(er)] of
! at Re=1000 for the present scheme for two di�erent grid sizes is shown. This error has
been de�ned as

rms(er)=
[

1
imax × jmax

∑
(!(k+1) −!(k))2

]1=2

where k and k+1 denote two consecutive iteration levels. The CPU times on a Sun enterprise
250 workstation for the two grids are 10.94 and 173:33 s, respectively, when the exit criteria
for the fall of residuals of the inner iterations for both  and ! are set at 10−3.

4. CONCLUSION

The HOC scheme on non-uniform grids for convection–di�usion has so far been tested only
for linear problems with grid transformation. The present work a�ords an HOC method on
non-uniform grids which avoids the complexities associated with transformation. Dispensing
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Figure 10. Comparisons of (a) horizontal velocity along the vertical centerline; and (b) vertical velocity
along the horizontal centerline for di�erent Re’s in the lid-driven cavity �ow (�=0:6).
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Figure 11. The bottom right vortices for the lid-driven cavity �ow at Re=3200 on 81× 81 grid:
(a) tertiary (�=0:6); and (b) tertiary, quaternary and post-quaternary (�=0:99).

with transformation also reduces computational e�ort as the method now deals with smaller
number of terms at each grid point. Owing to clustering the method is seen to produce
accurate solution of complex �ows with signi�cantly smaller number of grid points with
resultant economy. For instance, a 31× 31 grid is found to be good enough to capture the
�ow details including the tertiary vortices for the lid-driven cavity problem up to Re=1000.
The method may therefore, in many respects, be considered superior to similar ones on either
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(a) (b)

Figure 12. Streamline patterns for the lid-driven cavity �ow: (a) Re=1000
(31× 31; �=0:9); and (b) Re=7500 (121× 121; �=0:6).

Table III. Stream function and vorticity at primary vortex center for di�erent Re’s.

Re Kim and Moin Ghia et al. Bruneau and Jouron Present (�=0:6)

100 −0:103(−3:177) −0:103(−3:166) −0:103(—) −0:103(−3:152)
65× 65 129× 129 128× 128 41× 41

400 −0:112(−2:260) −0:114(−2:295) — −0:113(−2:260)
65× 65 257× 257 — 41× 41

1000 −0:116(−2:026) −0:118(−2:050) −0:116(—) −0:117(−2:057)
97× 97 129× 129 256× 256 61× 61

3200 −0:115(−1:901) −0:120(−1:989) — −0:120(−1:962)
97× 97 129× 129 — 81× 81

5000 −0:112(−1:812) −0:119(−1:860) −0:114(—) −0:119(−1:926)
97× 97 257× 257 512× 512 81× 81

7500 — −0:120(−1:880) −0:111(—) −0:115(−1:874)
— 257× 257 512× 512 121× 121

uniform grids or non-uniform grids with transformation. Non-uniformity in grid, however,
renders the algebraic system for the Poisson equations (for example, those associated with  )
non-symmetric, necessitating the use of hybrid BiCGStab algorithm instead of CG. We believe
that the solution procedure does not lose much competitive edge because of this, as it uses
smaller number of grid points which again may become signi�cant at times in terms of saving
memory. Since it is possible for the present method to place comparatively larger number of
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Figure 13. Convergence history based on the root mean square error of ! for
Re=1000 (�=0:8) in the lid-driven cavity �ow.

grid points in the boundary layer regions, it brings out some unreported features, for example,
two new vortices in the much examined lid-driven cavity �ow at Re=3200. The solution
procedure is very robust and to our knowledge this is the �rst instance of extension of an
HOC algorithm on non-uniform grid to the N–S equations, with or without grid-transformation.
Also we believe that the present work, for the �rst time, e�ectively extends an HOC algorithm
to Re’s much beyond 1000 in the lid-driven cavity problem and the method captures very
accurate solutions including new �ow features. Overall we consider the present method an
important addition to the existing solution procedures for incompressible viscous �ows.

APPENDIX A: DETAILS OF THE FINITE DIFFERENCE OPERATORS

The expressions for the �nite di�erence operators appearing in the Equations (11) and (20)
are as follows:

�x�ij =
�i+1; j − �i−1; j

2h
(A1)

�y�ij =
�i; j+1 − �i; j−1

2k
(A2)

�2x�ij =
1
h

{
�i+1; j

xf
−
(
1
xf
+
1
xb

)
�ij +

�i−1; j
xb

}
(A3)

�2y�ij =
1
k

{
�i; j+1

yf
−
(
1
yf
+
1
yb

)
�ij +

�i; j−1
yb

}
(A4)
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�x�y�ij =
1
4hk

(�i+1; j+1 − �i+1; j−1 − �i−1; j+1 + �i−1; j−1) (A5)

�x�2y�ij =
1
2hk

{
1
yf
(�i+1; j+1 − �i−1; j+1)−

(
1
yf
+
1
yb

)
(�i+1; j − �i−1; j)

+
1
yb
(�i+1; j−1 − �i−1; j−1)

}
(A6)

�2x �y�ij =
1
2hk

{
1
xf
(�i+1; j+1 − �i+1; j−1)−

(
1
xf
+
1
xb

)
(�i; j+1 − �i; j−1)

+
1
xb
(�i−1; j+1 − �i−1; j−1)

}
(A7)

�2x �
2
y�ij =

1
hk

{
�i+1; j+1

xfyf
+

�i−1; j+1
xbyf

−
(
1

xfyf
+

1
xbyf

)
�i; j+1 −

(
1

xfyf
+

1
xfyb

)
�i+1; j

+
(
1

xfyf
+

1
xfyb

+
1

xbyf
+

1
xbyb

)
�ij

−
(
1

xfyb
+

1
xbyb

)
�i; j−1 −

(
1

xbyf
+

1
xbyb

)
�i−1; j

+
�i+1; j−1
xfyb

+
�i−1; j−1
xbyb

}
(A8)

where xf , xb, yf and yb are de�ned in Section 2 and h=(xf + xb)=2 and k=(yf + yb)=2.
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